北京白癜风如何治疗 https://jbk.39.net/yiyuanfengcai/yyjs_bjzkbdfyy/选自谷歌博客作者:MurphyYuezhenNiu、SergioBoixo机器之心编译量子计算机有很多独特的优势,例如上次世界第一超算要算1万年的问题,量子计算机3分20秒就可以完成。然而,量子计算机需要严格控制容错、信息丢失等误差,这些误差极其复杂,很难手动模拟排除,那么我们为什么不用机器学习来学习并控制它们呢?近日谷歌的研究者就提出了用深度强化学习极大提升量子计算的性能。不久前,机器之心曾报道了谷歌的量子霸权论文。实现强大的量子计算必不可少的就是对量子进行门控制,以此来保证去除干扰的量子状态,保证正确的量子信息能够精确快速地通过控制门。量子霸权电路的控制操作。a.实验中使用的量子电路示例;b.单量子比特和双量子比特门的控制信号波形图。以往而言,控制量子的门算法往往不能达到量子计算机需要的精确度和速度要求,而谷歌这回采用了新的机器学习方法,在门控制的精确度和速度上有了数量级的提升。近来,强化学习在控制优化问题上显示出很好的效果。强化学习可以从噪声控制轨迹中提炼非局部规律(non-localregularities),并在多种任务中进行迁移。为了将这些优势应用于量子控制优化问题上,谷歌的研究者提出了一种新的控制框架,可以同时优化量子计算的速度和精准性,用于弥补泄露和随机控制错误带来的问题。和随机梯度下降的基线方法进行对比中,研究者提出的方法实现了两个数量级的平均门错误数降低,以及一个数量级的优化门同步时间降低。研究者认为,这种结合了物理发现和最新机器学习方法的研究可以推动量子模拟、量子化学,乃至使用近期量子设备测试量子霸权方面的研究。实现近期量子计算机的最主要挑战就是其最基本的组成部分:量子比特。量子比特可以和任意携带能量、且足够近的物体进行相互作用,即stray光量子(例如不必要的电磁场)、声子(量子设备的机械震荡)、或者量子缺陷(制造过程中形成的芯片基片不规则性),这些都可能造成量子比特状态无法预测的改变。更复杂的问题是,用来控制量子比特的工具也会带来很多挑战。操作和读取量子比特是通过经典物理控制完成的,也就是通过将电磁场形式的模拟信号耦合到嵌入量子比特的物理基片上,例如超导回路等。这些电子控制的缺点是会产生白噪声,此外对于来自外部辐射源的干扰以及数模转换器,它们甚至会引入更多的随机误差,从而降低量子回路的性能。为了提升量子计算机的计算能力,铺平通往大规模量子计算的道路,很有必要先建立一个物理模型以准确地描述这些实验问题。谷歌和MIT的研究者发表了一篇名为「UniversalQuantumControlthroughDeepReinforcementLearning」的论文,该论文已经发表在NatureNPJQuantumInformation在线子刊上。研究者展示了一种使用深度强化学习生成的新型量子控制框架,它可以通过单个控制成本函数封装量子控制最优化中的各种实际问题。论文
转载请注明:http://www.0431gb208.com/sjszyzl/5990.html