导语/Introduction
机器学习算法流派众多,但不外乎两种基本构架,即自上而下传播全局误差与自下而上基于相关性调整局部神经元间的连接。近日清华大学的研究团队模仿海马体的神经元权重更新机制,在NatureCommunications上提出了一种结合全局与局部权重更新规则的混合模型,并验证了该模型在高噪声、小数据量、持续学习三种任务场景下的优越性,为神经形态算法及其硬件实现的协同开发开辟了一条新的路径。
论文题目:
Brain-inspiredglobal-locallearningincorporatedwithneuromorphic
转载请注明:http://www.0431gb208.com/sjslczl/1027.html